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Abstract. Image Captioning is a task to generate descriptions for given
images. Most encoder-decoder methods suffer from lacking the ability
to correct the mistakes in predicted word. Though current deliberation
motivated models can refine the generated text, they use single level
image features throughout two stages. Due to the insufficient image in-
formation provided for the second-pass, deliberation action is ineffective
in some cases. In this paper, we propose Incremental Context Guided
Deliberation Transformer, namely ICDT, which consists of three mod-
ules, including: 1) Incremental Context Encoder, 2) Raw Caption De-
coder and 3) Deliberation Decoder. Motivated by human writing habits
in daily life, we treat the process of generating a caption as a delibera-
tion procedure. The Raw Caption Decoder in first-pass constructs a draft
sentence and then the Deliberation Decoder in second-pass polishes it to
a better high-quality caption. In particular, for image encoding process,
we design an Incremental Context Encoder that can provide cumulative
encoded context based on different levels of image features for the delib-
eration procedure. Our encoder makes image features at different levels
play specific roles in each decoding pass, instead of being simply fused
and fed into the model for training. To validate the performance of the
ICDT model, we evaluate it on the MSCOCO dataset. Compared with
both Transformer-based models and deliberation-motivated models, our
ICDT improves the state-of-the-art results and reaches 81.7% BLEU-1,
40.6% BLEU-4, 29.6% METEOR, 59.7% ROUGE and 134.6% CIDEr.

Keywords: Image Captioning · Deliberation Networks · Transformer.

1 Introduction

Image captioning task aims to generate a descriptive sentence for a given image,
and its challenges lie not only in comprehensive image understanding but also in
generating a sentence that matches the visual semantics of the image. The ma-
jority of proposed image captioning models following the encoder-decoder frame-
work[25, 4, 13, 2, 32, 31, 10] has achieved promising progress on public datasets.

Despite the great success, such single-pass decoding process suffer from lack-
ing the ability to correct the mistakes in predicted words. To overcome this lim-
itation, deliberation motivated models are introduced to image captioning[30,
28, 7, 6, 8, 14] for better decoding. Motivated by human writing behaviours, de-
liberation models should firstly generate a rough caption of the image from a
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Raw Caption:
“A person riding a bike with 
two horses behind him.”

Final Caption:
“A woman riding a bike with 
two horses behind her on a 
sidewalk.”

Grid Features

Region Features

Incremental Attention

Incremental Image Representations

Deliberation Decoder

Fig. 1. An illustration of incremental context guided deliberation process. The left
part shows how attention works to obtain incremental representation, and the right
part summarizes the deliberation results. The blue arrow indicates attention operation
and the blue mask denotes the attended area in original image.

global perspective, and then use the details to modify the rough caption. How-
ever, most of deliberated-based models are especially focus on text refinement,
but use single level image features throughout two stages. These methods suffer
from a drawback: the visual features from the first stage is insufficient for fixing
the wrong words in the deliberation process. To utilize more diverse image fea-
tures, Some works are proposed to fusion or interact of grid and region features
to complement each other’s advantages by using attention modules [10, 5, 27, 19,
18]. However, the direct use of two sources of features is prone to produce se-
mantic noise. e.g. A grid containing a horse’s leg may interact with the incorrect
region containing a branch just because they have similar appearances. There-
fore, merits of the two features should be leveraged separately with different
functions instead of being used equally, and that can be well applied through
two processes of deliberation.

To tackle the above problems and effectively combine two different stages, we
try to design a method to utilize grid and region features in an incremental way
to guide the deliberation procedure. As shown in Fig. 1, the grid level features
attend to semantically related regions to get the incremental image representa-
tion. With the condition of grid attentive regions, the missing details of objects
in the image can be captured, which guides the deliberation decoder to modify
the word person to the correct detailed word women. Besides, unpredicted words
in the raw caption like sidewalk can also be decoded by the incremental con-
text. To this end, the introduction of the deliberation decoder and the rational
use of the two features are organically combined, which inspires us to design a
comprehensive end-to-end model.

In this paper, we propose Incremental Context Guided Deliberation Trans-
former, namely ICDT. As shown in Fig 2, ICDT is a two-pass decoding model,
consisting of three modules:1) Incremental Context Encoder: encode grid level
features as global first-pass context while adding local region level features to it as
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A cat cat is lying on a sofa.
Raw Caption:

A tabby cat with a green tie
lies on the sofa.

Deliberated Caption:
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Fig. 2. Overview of our Incremental Context Guide Deliberation Transformer model.

incremental second-pass context, 2) Raw Caption Decoder: a non-autoregressive
Transformer decoder use the global information provided by first-pass context
to generate a raw caption, 3) Deliberation Decoder: polish the raw caption to a
fine caption under the guidance of incremental second-pass context.

The major contributions of our paper can be summarized as follows:

– We propose a novel two-pass decoding model ICDT to achieve polishing gen-
erated sentence guided by two different level image features in an incremental
way.

– We design an Incremental Context Encoder to obtain both global image
features and incremental image features. With the Incremental Context En-
coder, the second decoder of ICDT can be guided correctly to modify and
detail the raw caption in the deliberation procedure.

– Experiments on MS-COCO dataset demonstrate that our model achieve new
state-of-art performance for image captioning, i.e., 134.6% CIDEr scores on
Karpathy [12] test set.

2 Related Work

2.1 Image Encoding over Different Features

With the advantage of covering the information of the entire image without over-
compressing the information, grid features were used in many image captioning
models [21, 17, 29]. Compared with grid features, region features can provide
object-level information of the image. By introduing region features[2, 9, 10, 5],
the quantitative performance of image captioning was significantly improved.
Nevertheless, the above works predicted sentences by using only one kind of
features and lack full utilization of image information.

In order to integrate the advantages of both grid and region features, Wang
et al.[26] proposed a hierarchical attention network to combine text, grid, and
region features and explore the intrinsic relationship between different features.
Luo et al.[18] proposed a cross-attention module with a graph to exploit com-
plementary advantages of region and grid features.
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2.2 Deliberation-motivated Methods

Motivated by human behaviour in the process of describing an image, delibera-
tion aims to polish the existing caption results for further improvement. Wang
et al. [30] proposed Review Net as a rudiment of the deliberation network for
image captioning, which outputs a thought vector after each review step to
capture the global properties in a compact vector representation. Sammani et
al. [22] introduced a Modification Network to modify existing captions from a
given framework by modeling the residual information. Latterly, [23] proposed
a caption-editing model to perform iterative adaptive refinement of an existing
caption. Related to ruminant decoder [8], [14] introduced a two-pass decoding
framework, where a Cross Modification Attention is used to enhance the seman-
tic expression of the image features and filter out error information from the
draft caption to get better image captions. Although the above methods involve
the deliberation process, they still focus only on the relationship between orig-
inal image features and the draft caption, ignoring the effect of using different
granularity image features throughout the process of generation.

3 Methodology

3.1 Problem Statement

In order to obtain a precise caption, we define the image captioning task as
generating a refined sentence based on a raw caption. Formally, give an image
I, we first need to generate a sequence Y ∗′

= {y∗′

1 , y∗
′

2 , ..., y∗
′

T }, where y∗
′

T ∈ D
is the predicted word in the raw caption, D is the dictionary, and T denotes
the sequence length. In the deliberation procedure, we polish the raw caption
guided by the extra image information, and finally get a fine caption Y ∗ =
{y∗1 , y∗2 , ..., y∗T }, y∗T ∈ D.

3.2 Incremental Context Encoder

Efficient encoding of visual features of images is a prerequisite for generating
high-quality captions. The deliberation-motivated methods usually encode single
features like grids or regions, and then use the same encoded context when
generating raw captions and final captions. This makes the deliberation process
can not acquire additional information to modify the generated text and only
focus on optimizing the language model. In this paper, we try to design an
Incremental Context Encoder (ICE) that can provide incremental context for
the two-pass decoder, so that it can provide extra information to guide the
generation of final captions when deliberating raw captions. As shown in Fig. 3a,
the grid features are encoded as first-pass context while integrating the region
features through incremental attention as the second-pass context.
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Fig. 3. The architecture of Encoder and Decoder modules.

Basic Encoding The ICE employs a vanilla Transformer encoder module for
basic encoding. Since Grid features can cover the full content of a given image
to describe the global scenes, we utilize it as input for basic encoding to obtain
a first-pass context for generating a raw caption. The input grid features are
directly extracted from the RCNN model. Considering the positional information
of grids, we introduce a learnable embedding layer and combine them:

Vg = Eg + Epos (1)

where Epos indicates the positional embedding and Eg stands for the extracted
encoding grid features.

After that, we feed the combined feature Vg to the Transformer encoder
module. Each encoder layer contains two sub-layers, including a multi-head self-
attention (MHA) layer and a feed-forward network (FFN) layer:

H
′(l)
g = MHA(H(l)

g , H(l)
g , H(l)

g ) (2)

H(l+1)
g = FFN(H

′(l)
g ) (3)

where H
(0)
g = Vg and l is the number of encoder layer. The hidden states of grids

H
(l)
g are fed into the (l+1)-th MHA layer. Specifically, the FFN is a position-wise

fully connected layer consisting two linear projections with a ReLU activation
in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Through the Transformer encoder, we get the encoded hidden state from
N -th layer HN

g as the first-pass context C1.
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Incremental Attention Encoding Once the first-pass context was obtained
through basic encoding, we need to add extra information to it to guide the
deliberation pass. Although grids can provide information covering the entire
image, it still lacks attention to the salient objects. So we take region features as
object-level information to improve the capability of understanding the objects.
In order to achieve the purpose of integrating region features on the basis of the
grid, we design an Incremental Attention Encoding mechanism.

Same as basic encoding, we first feed the extracted region features to the
MHA and FFN component to get the middle encoded context C

(l)
r :

H
′(l)
r = MHA(H(l)

r , H(l)
r , H(l)

r ) (5)

C(l)
r = FFN(H

′(l)
r ) (6)

where H
(0)
r = Vr, which denotes region feature vector extracted from object

detection model.
Then we use the encoded first-pass context C1 as the query matrix and C

(l)
r

as the key and value matrix. The scale-dot product between grids and regions
stands for attentive relationships, which can be leveraged as a weight matrix
applying to region features. For each grid, the weighted context contains region
information at the corresponding location. The incremental attention can be
stated recursively as follows:

H
′(l)
inc = softmax

 (C1)
(
C

(l)
r

)T

√
d
C

(l)
r

C(l)
r (7)

After incremental attention, an FFN layer is also applied to H
′

inc:

H
(l)
inc = FFN(H

′(l)
inc ) (8)

Notice that the incremental attention encoding and basic encoding are com-
puted in the same layer. Finally, we directly add N -th incremental encoded
context HN

inc to C1 and get the second-pass context C2:

C2 = C1 +HN
inc (9)

With the first-pass context C1, the Raw Caption Decoder (RCD) generates
a sequence of raw caption Y ∗′

= {y∗′

1 , y∗
′

2 , ..., y∗
′

T }, where T is the length of the
raw caption. Different from other deliberation-motivated models, we use a non-
autoregressive decoder as RCD. The non-autoregressive decoder enables parallel
prediction during inference decoding. As shown in Fig 3b, the RCD removes the
softmax layer during prediction, and directly use the vector output by the linear
layer as the raw caption embedding feeding to the deliberation decoder.

Therefore, we remove the Masked Multi-head Self-attention layer of the
vanilla Transformer decoder, and use the first-pass context from ICE directly
to the MHA layer:
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H
′(l)
raw = MHA(H

(l)
1 , H

(l)
1 , H

(l)
1 ) (10)

where H
(0)
1 = C1. After that, A Feed-forward layer also is introduced:

H(l)
raw = FFN(H

′(l)
raw) (11)

And then we add a projection linear layer and a softmax layer for the training
stage.

Y ∗′
= softmax(proj(HN

raw)) (12)

Due to the non-autoregressive design, the RCD executes in parallel for both
training and inference stages. However, this makes RCD unable to directly gen-
erate coherent sentences.

3.3 Deliberation Decoder

The deliberation decoder (DD) aims to polish the preliminary caption guided
by the second-pass context. To achieve the deliberation procedure, we design a
Transformer-like autoregressive decoder. Fig 3b illustrates the detailed structure
of DD. As the same as vanilla Transformer, the output embedding of target
sentence Es is fed into a Masked Multi-head self-attention (MMHA) layer during
the training state:

H
′(l)
s = MMHA(H(l)

s , H(l)
s , H(l)

s ) (13)

where H
(0)
s = Es. After that, DD incorporates the second-pass context which

contains the attentive region features by grids. Since the ICE can leverage the
extra region features to enhance the detailed information of objects, we use
the Multi-head attention layer to stress the relationship between caption and
attentive regions:

H
′(l)
deli = softmax


(
H

′(l)
s

)
(C2)

T√
dC2

C2 (14)

Then we add an additional multi-head attention layer and take the embed-
ding of the raw caption as input:

H
(l)
deli = softmax


(
H

′(l)
deli

)
(Hraw)

T√
dHraw

Hraw (15)

where H
(l)
deli and Hraw are treated as query and key matrix respectively, which

contributes to learning a weight for refining the raw caption. Notice that the
projection layer of RCD and output embedding layer of DD shares the same
parameter weights which are used to embed the vocabulary of the caption. And
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Hraw is extracted from the projection layer of RCD to avoid the extra embedding
layer breaking the end-to-end structure of ICDT.

Finally, the DD also uses a FNN layer before the projection linear layer:

Y ∗ = softmax
(
FFN(HN

deli)
)

(16)

3.4 Training details

Following standard practice of image captioning, we first calculate the cross-
entropy loss for each decoder:

Li
XE (θ) = −

T−1∑
t=0

log
(
pθ

(
Y ∗
t | Y ∗

0:t−1, I
))

(17)

where Y ∗
t is the ground-truth word, and θ is the parameter of i-th decoder.

We obtain the overall learning objective by adding the losses of Raw Caption
Decoder and Deliberation Decoder:

LXE = Lraw
XE + Ldelib

XE (18)

Following Cornia et al.[5], we also introduce reinforcement learning for further
finetune to make up the difference between cross-entropy loss and evaluation
metrics between cross-entropy loss and evaluation metrics. When training with
reinforcement learning, we use the CIDEr-D score as a reward through Self-
Critical Sequence Training (SCST)[21]. At prediction time, we simplify the Raw
Caption Decoder as an inner decoder layer instead of generating sentences. After
that, the Deliberation Decoder can generate the final caption directly through
beam search, and the highest scored sequence has been kept as the best caption.

4 Experiments

4.1 Experimental Settings

Dataset and Evaluation Metrics. Microsoft COCO 2014 dataset[16] is the
widely used benchmark for image captioning. Each image is annotated with 5
caption sentences. We follow the setting of Karpathy and Fei-Fei[12] for the of-
fline evaluation, where 113,287 images are used for training, 5,000 images for
validation and 5,000 images for testing. To evaluate the quality of generated
captions, we use COCO caption evaluation tool1 to calculate the standard eval-
uation metrics, including BLEU-1/4[20], METEOR[3], ROUGE[15], CIDEr[24]
and SPICE[1]. All metrics can reflect the quality of the generated caption text
from different aspects.

1 https://github.com/tylin/coco-caption
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Table 1. Comparison results on Transformer-based models. For fair comparison, all
’Grid Only’ models takes the result based on features extracted from ResNext-101
backbone, and all ’Region Only’ models use ResNet-101 backbone.

Feature Model BLEU-1 BLEU-4 METOR ROUGE CIDEr SPICE

Grid Only

AoA 80.7 39.0 28.9 58.7 129.5 22.6
M2 80.8 38.9 29.1 58.5 131.7 22.6
X-Transformer 81.0 39.7 29.4 58.9 132.5 23.1
RSTNet 81.1 39.3 29.4 58.8 133.3 23.0

Region only

ETA 81.5 39.9 28.9 59.0 127.6 22.6
ORT 80.5 38.6 28.7 58.4 128.3 22.6
CPTR 81.7 40.0 29.1 59.4 129.4 -
AoA 80.2 38.9 29.2 58.8 129.8 22.4
M2 Transformer 80.8 39.1 29.2 58.6 131.2 22.6
X-Transformer 80.9 39.7 29.5 59.1 132.8 23.4
DRT 81.7 40.4 29.5 59.3 133.2 23.3

Grid and Region
I2RT 80.9 39.2 29.3 58.9 130.9 22.9
DLCT 81.4 39.8 29.5 59.1 133.8 23.0
ICDT(Our model) 81.7 40.6 29.6 59.7 134.6 23.2

Implementation Details. Since our ICDT model needs to use both grid and
region features, we adopt the same data preprocessing method as Luo et al.[18].
The pre-trained Faster R-CNN provided by Jiang et al[11] was used to extract
features from both levels simultaneously. For extracting features, it removes the
delation and uses a normal C5 layer to extract grid features. For grid features,
an additional average-pool was applied to get 7×7 grid size vectors. Meanwhile,
the 2048-d output vector from the first FC-layer of the detection head was used
as region features.

In our implementation, we set the dimension of each layer in encoder and
decoders to 512, the number of heads to 8. The number of layers for both encoder
and decoder is set to 4. We set the dimension df of FFN to 2048. We employ
dropout with keep probability 0.9 after each attention and feed-forward layer. In
the XE pre-training stage, we warm up our model for 4 epochs with the learning
rate linearly increased to 1e−4, and then decays by rate 0.8 every 3 epochs. When
training with SCST, the learning rate starts from 5e−5 and decays by rate 0.1
every 50 epochs. We train all models using the Adam optimizer with momentum
of 0.9 and 0.999, a batch size of 128. We use beam search with a beam size of 5
to generate captions when validating and testing.

4.2 Quantitative Analysis

Compared with Transformer-based Methods As shown in Table 1, we
compare ICDT with other Transformer-based model for image captioning. Since
ICDT considers both image grid and region granularity features, the models
selected for comparison are divided into three groups, including:
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Table 2. Comparison results on Deliberation-motivated models

Model BLEU-1 BLEU-4 METOR ROUGE CIDEr SPICE

Review Net - 29.0 23.7 - 88.6 -
Skeleton Key 74.2 33.6 26.8 55.2 107.3 19.6
Stack-Captioning 78.6 36.1 27.4 56.9 120.4 20.9
Deliberate Attention 79.9 37.5 28.5 58.2 125.6 22.3
Ruminant Decoding 80.5 38.6 28.7 58.7 128.3 22.3
ETN 80.6 39.2 - 58.9 128.9 22.6
CMA-DM 80.6 39.2 29.0 58.9 129.0 22.6

ICDT(Our model) 81.7 40.6 29.6 59.7 134.6 23.2

– Grid Only: The model only takes the grid features to generate the image
caption, where RSTNet[33] is the original model, and AoA, M2 and X-
Transformer are the experimental models used to compare with region fea-
tures in the original paper.

– Region Only: Models that only use region features, Because R-CNN model
is the mainstream way of the region feature extraction in image captioning,
all the baselines in this group take the official results of the original model.

– Grid and Region: Models that utilize both grid and region features at the
same time,

From the results of the model on different evaluation metrics, our method
fully surpasses the previous Transformer-based methods in terms of BLEU-1,
BLEU-4, METOR, ROUGE and CIDEr. The CIDEr score of our DLCT reaches
134.6%, wich advances DLCT 0.8%. The boost of performance demonstrate the
advantages of our ICDT which use incremental context encoder instead of cross
fusion of region and grid features. In addition, according to the evaluation re-
sults, the model using two features achieves higher scores on CIDEr and SPICE
metrics than the model using only single feature. In particular, compared with
the Transformer-based SOTA model DLCT, our method achieves better perfor-
mance in all indicators, reflecting the advantages of introducing a deliberation
decoder. Next we will compare ICDT with all deliberation-motivated models.

Compared with Deliberation-motivated Methods. Table 2 summaries
all models designed with deliberation actions. As shown in Table 2, our ICDT
model consistently exhibits better performance than the others. Since all of the
deliberation-motivated models use LSTM instead of Transformer, their feature
encoding and sequence generation capabilities are not as good as our proposed
Transformer-based Model. However, the deliberation idea still shows its capabil-
ity on image captioning task and deserves to be generalized more widely.

4.3 Ablation Study

In order to verify the effectiveness of each module in ICDT, we design ablation
experiments based on the vanilla Transformer. As shown in Table 3, we sepa-
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Table 3. Performance comparison of Incremental Context Encoder (ICE) and Raw
Caption Decoder & Deliberation Decoder (R&D) for grids (G) and regions (R). E+D
denotes traditional encoder-decoder framework which is based on vanilla Transformer.

Feature BLEU-1 BLEU-4 METOR ROUGE CIDEr SPICE

E+D(G) 81.2 39.0 29.0 58.6 131.2 22.4
E+D(R) 80.1 39.0 28.9 58.6 130.1 22.4
E+D(G + R) 80.9 38.9 29.2 58.6 131.6 22.7
ICE+D(G + R) 81.1 39.3 29.5 58.9 132.8 22.9

E+R&D(G) 81.2 39.2 29.0 59.0 131.5 22.4
E+R&D(R) 80.8 39.1 29.1 58.9 130.1 22.3
E+R&D(G + R) 81.3 39.4 29.8 58.9 132.4 22.8
ICE+R&D(G + R) 81.7 40.6 29.6 59.7 134.6 23.2

rately use different visual features to validate the impact of Incremental Context
Encoder. Further, all models are extended to two-pass decoders that we can
evaluate the influence of Deliberation Decoder.

Impact of Incremental Context Encoder. To better understand the effect
of our Incremental Context Encoder, we conduct four experiments on different
features. The ICE+D model surpasses both single feature and fusion feature
encoded models, which illustrates the effectiveness of Incremental Context En-
coder. By integrating the attentive region feature and adding it to grid feature,
the captioning model can better understand the corresponding region informa-
tion and enrich the final encoded context. In sum, ICE+D outperforms E+D in
most of the metrics and performs slightly worse in BLUE-1. We believe this is
due to the fact that the Grid feature tends to highlight individual words rather
than object entities in the raw image after self-attention.

Impact of Deliberation Decoder As shown in the lower part of Table 3, we
also conduct several experiments to demonstrate the effectiveness of our Deliber-
ation Decoder. After adding the deliberation decoder, the performance of experi-
mental models can be further improved whether using the ordinary Transformer
encoder or our proposed ICE. Specifically, the BLEU-4, ROUGE and CIDEr
scores have the most significant improvements. The results also show that after
the introduction of Deliberation Decoder, the fluency and correctness of the final
generated caption can be significantly improved through the polishing.

In addition, we analyzed the experimental results of E+R&D(G+R) and
ICE+R&D(G+R). ICE+R&D surpassed E+R&D by nearly 2% on the CIDEr
metric. Owing to the ICE we designed can guide two decoding passes, although
ordinary E+R&D can perform second-pass polishing, same encoded context from
single encoder leads the difficulty to perform effective refinement on the raw
caption generated in the first-pass. However, ICE+R&D adds incremental im-
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GT:Two people fly a kite while 
they stand near a body of water.
Transformer: Two people fly a 
red kite near water.
ICDT:Two people playing with a 
red kite near water.

GT:A double-decker bus is on a 
street outside a building.
Transformer:A double-decker
driving passed a building.
ICDT: A red double-decker driving 
passing by a building with many 
windows.

GT:A cat curled up on a folded towel 
on a bed.
Transformer:A cat laying on a 
folded blanket on a bed.
ICDT: A cat curl up on a folded 
blanket on a bed.

GT:There is a dog that is sticking 
its head out the window.
Transformer:There is a dog 
sticking its head out the window.
ICDT: There is a dog sticking its
head out of a car window.

GT:The conference room is full of 
people working on their laptop 
computers.
Transformer:A large group of people 
are working on laptop computers.
ICDT: Many people are working on 
their laptops together.

GT: They are bravefor riding in the 
jungle on those elephants.
Transformer:There are people riding 
elephants in a forest.
ICDT: Two elephants carrying people 
on the backs in the forest .

Fig. 4. Examples of image captioning results by vanilla Transformer and our ICDT
with ground truth sentences.

age representations to deliberation decoder, which allows to obtain additional
information to correct and polish the raw caption.

4.4 Qualitative Analysis

We show several example image captions generated by vanilla Transformer and
ICDT in Fig. 4. In genegral, our ICDT can generate more detailed and correct
captions. For two examples in the first column, both Transformer and ICDT
can provide accurate descriptions. For examples in the middle column, we can
see that our ICDT is able to capture more contextual information from the
image to generate richer and more correct descriptions in some cases. The third
column shows that both Transformer and ICDT fail to provide a high-quality
caption which contains some specific information in the ground truth sentences.
One possible reason is that human can get the information such as "conference
room" and "brave" based on their background knowledge or associations about
this scene, while Transformer and ICDT do not currently have such capabilities.
This can propose a valuable direction for future research in image captioning.

5 Conclusion

In this paper, we propose a novel comprehensive two-pass decoding based model,
Incremental Context Guided Deliberation Transformer (ICDT) for image cap-
tioning. In the first-pass a Raw Caption Decoder uses grid features alone to
obtain a raw description for the image, and in the second-pass a Deliberation
Decoder guided by rich image feature representations to polish the raw descrip-
tion to a high-quality caption . In order to cooperate with deliberation decoding
procedure, we propose an Incremental Context Encoder to encode more accurate
and detailed image information incrementally. As far as we know, ICDT is the
only model that comprehensively considers different level features to guide the
deliberation process. Results show that our approach outperforms the state-of-
the-art methods.



Title Suppressed Due to Excessive Length 13

References

1. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: Semantic Proposi-
tional Image Caption Evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) Computer Vision – ECCV 2016. pp. 382–398. Springer International Pub-
lishing, Cham (2016)

2. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang,
L.: Bottom-Up and Top-Down Attention for Image Captioning and Visual Ques-
tion Answering. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 6077–6086. IEEE, Salt Lake City, UT (Jun 2018)

3. Banerjee, S., Lavie, A.: METEOR: An Automatic Metric for MT Evaluation with
Improved Correlation with Human Judgments. In: Proceedings of the ACL Work-
shop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization. pp. 65–72. Association for Computational Linguistics, Ann
Arbor, Michigan (2005)

4. Cho, K., Courville, A., Bengio, Y.: Describing Multimedia Content Using
Attention-Based Encoder-Decoder Networks. IEEE Transactions on Multimedia
17(11), 1875–1886 (2015), conference Name: IEEE Transactions on Multimedia

5. Cornia, M., Stefanini, M., Baraldi, L., Cucchiara, R.: Meshed-Memory Transformer
for Image Captioning. pp. 10578–10587 (2020)

6. Gao, L., Fan, K., Song, J., Liu, X., Xu, X., Shen, H.T.: Deliberate Attention
Networks for Image Captioning. Proceedings of the AAAI Conference on Artificial
Intelligence 33(01), 8320–8327 (Jul 2019), number: 01

7. Gu, J., Cai, J., Wang, G., Chen, T.: Stack-Captioning: Coarse-to-Fine Learning for
Image Captioning. Proceedings of the AAAI Conference on Artificial Intelligence
32(1) (Apr 2018), number: 1

8. Guo, L., Liu, J., Lu, S., Lu, H.: Show, Tell, and Polish: Ruminant Decoding for
Image Captioning. IEEE Transactions on Multimedia 22(8), 2149–2162 (2020),
conference Name: IEEE Transactions on Multimedia

9. Herdade, S., Kappeler, A., Boakye, K., Soares, J.: Image Captioning: Transform-
ing Objects into Words. In: Advances in Neural Information Processing Systems.
vol. 32. Curran Associates, Inc. (2019)

10. Huang, L., Wang, W., Chen, J., Wei, X.Y.: Attention on Attention for Image
Captioning. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 4633–4642. IEEE, Seoul, Korea (South) (Oct 2019)

11. Jiang, H., Misra, I., Rohrbach, M., Learned-Miller, E., Chen, X.: In Defense of
Grid Features for Visual Question Answering. pp. 10267–10276 (2020)

12. Karpathy, A., Fei-Fei, L.: Deep Visual-Semantic Alignments for Generating Image
Descriptions. pp. 3128–3137 (2015)

13. Li, L., Tang, S., Zhang, Y., Deng, L., Tian, Q.: GLA: Global–Local Attention for
Image Description. IEEE Transactions on Multimedia 20(3), 726–737 (Mar 2018),
conference Name: IEEE Transactions on Multimedia

14. Lian, Z., Zhang, Y., Li, H., Wang, R., Hu, X.: Cross Modification Attention Based
Deliberation Model for Image Captioning. arXiv:2109.08411 [cs] (Sep 2021), arXiv:
2109.08411

15. Lin, C.Y.: ROUGE: A Package for Automatic Evaluation of Summaries. In: Text
Summarization Branches Out: Proceedings of the ACL-04 Workshop. pp. 74–81.
Association for Computational Linguistics, Barcelona, Spain (Jul 2004)

16. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla,



14 No Author Given

T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. pp. 740–755.
Springer International Publishing, Cham (2014)

17. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing When to Look: Adaptive At-
tention via a Visual Sentinel for Image Captioning. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 3242–3250. IEEE, Hon-
olulu, HI (Jul 2017)

18. Luo, Y., Ji, J., Sun, X., Cao, L., Wu, Y., Huang, F., Lin, C.W., Ji, R.: Dual-
level Collaborative Transformer for Image Captioning. Proceedings of the AAAI
Conference on Artificial Intelligence 35(3), 2286–2293 (May 2021), number: 3

19. Pan, Y., Yao, T., Li, Y., Mei, T.: X-Linear Attention Networks for Image Caption-
ing. pp. 10971–10980 (2020)

20. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a Method for Automatic
Evaluation of Machine Translation. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics. pp. 311–318. Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA (Jul 2002)

21. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-Critical Sequence
Training for Image Captioning. pp. 7008–7024 (2017)

22. Sammani, F., Elsayed, M.: Look and Modify: Modification Networks for Image
Captioning. arXiv:1909.03169 [cs] (Mar 2020), arXiv: 1909.03169

23. Sammani, F., Melas-Kyriazi, L.: Show, Edit and Tell: A Framework for Editing
Image Captions. pp. 4808–4816 (2020)

24. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: Consensus-Based Image
Description Evaluation. pp. 4566–4575 (2015)

25. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image
caption generator. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3156–3164. IEEE, Boston, MA, USA (Jun 2015)

26. Wang, W., Chen, Z., Hu, H.: Hierarchical Attention Network for Image Captioning.
Proceedings of the AAAI Conference on Artificial Intelligence 33(01), 8957–8964
(Jul 2019), number: 01

27. Wang, Y., Zhang, W., Liu, Q., Zhang, Z., Gao, X., Sun, X.: Improving Intra-
and Inter-Modality Visual Relation for Image Captioning. In: Proceedings of the
28th ACM International Conference on Multimedia, pp. 4190–4198. Association
for Computing Machinery, New York, NY, USA (2020)

28. Wang, Y., Lin, Z., Shen, X., Cohen, S., Cottrell, G.W.: Skeleton Key: Image Cap-
tioning by Skeleton-Attribute Decomposition. pp. 7272–7281 (2017)

29. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, Attend and Tell: Neural Image Caption Generation with Vi-
sual Attention. In: Proceedings of the 32nd International Conference on Machine
Learning. pp. 2048–2057. PMLR (Jun 2015), iSSN: 1938-7228

30. Yang, Z., Yuan, Y., Wu, Y., Cohen, W.W., Salakhutdinov, R.R.: Review Networks
for Caption Generation. In: Advances in Neural Information Processing Systems.
vol. 29. Curran Associates, Inc. (2016)

31. Yao, T., Pan, Y., Li, Y., Mei, T.: Exploring Visual Relationship for Image Cap-
tioning. pp. 684–699 (2018)

32. Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting Image Captioning With At-
tributes. pp. 4894–4902 (2017)

33. Zhang, X., Sun, X., Luo, Y., Ji, J., Zhou, Y., Wu, Y., Huang, F., Ji, R.: RSTNet:
Captioning With Adaptive Attention on Visual and Non-Visual Words. pp. 15465–
15474 (2021)


